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Introduction

This dissertation research is devoted to solving the problem of increasing the
security level of algorithmic methods of information protection, in the synthesis of
which, among other things, it is necessary to use nonlinear bijective transformations
(permutations). It is necessary to guarantee their cryptographic characteristics. Thus
functioning of algorithms of data privacy protection takes place in conditions of
untrusted environment, namely at possibility of an intruder to get information about time
of operations execution, that imposes additional requirements to designs of nonlinear
bijective transformations. Without losing generality, this dissertation research examines
only data privacy issues.

Cloud technologies, which is usually owned by a service provider, are
increasingly being developed. The degree of trust in cloud infrastructure depends
on the protections used, which are shaped by an adversary model that requires
extensive research to investigate the adequacy of that model. Due to the presence
of hardware computing facilities on the service provider side, an adversary has
additional opportunities related to the possibility of using information from side
channels. One of the most common such channels is the execution time of operations
on a computing device.

In the dissertation, a study of the adversary’s capabilities, leading to the
impossibility of ensuring the property of confidentiality of data when implementing
the algorithms for their protection in an untrusted environment on graphical computers
is carried out. In particular, it is shown that the software tools used at the time of the
study, implementing them, are potentially not secure, which leads to the need to use
other ways of their implementation.

For effective implementation of data encryption algorithms, the possibility to
represent its nonlinear transformations in the form of “small” number of logical
operations is necessary. At the same time, the security of the algorithm directly depends
on the nonlinearities of the permutations used in its synthesis. In the dissertation research
the problems of effectively realized nonlinear bijective transformations having “high”
cryptographic properties, which allows to use them in the synthesis of algorithms for
data encryption are considered. The thesis also proposes a new method for analyzing
block ciphers, based on the peculiarities of the used nonlinear transformations. An
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approach is proposed and justified, which allows to estimate the security of the used
encryption algorithm.

Relevance. The increase in the number of computing devices leads to the need
to process large amounts of data. At the same time there is a constant transfer,
processing, storage of confidential information, for the protection of which various
software, hardware and organizational measures are used. Ensuring the confidentiality
of information for a large amount of time is a complex and urgent task, the solution of
which is associated with the synthesis of information protection algorithms.

An additional difficulty in ensuring the properties of data security is the
possibility of an adversary to obtain additional information from the side channels.
In 1995, an article [46] was published, which showed the fundamental possibility of
using the execution time of operations to recover information unknown to the adversary.
At present it is necessary to take into account such capabilities of the adversary, which
is reflected in the regulatory documents [4; 5].

Both the security of the information system as a whole and the complexity
of ensuring its correct functioning depend on the correct choice of the adversary
model. Insufficient requirements can lead to a violation of the security properties of
the information system, while overstated requirements — to the impossibility or high
complexity of its use.

The possibility of implementing attacks that use information about the execution
time of operations on the computer’s CPU is well known,[46]. Moreover, the use of
modern standardized algorithms of data encryption is not safe with respect to such
attacks (see [8; 13]). The architecture of graphics coprocessors is very different from
the architecture of the modern computer’s CPU: they are massively parallel computing
devices simultaneously implementing a large number of simple operations.

Thus, the task of investigating the possibility of applying attacks using
information from side channels in general and, in particular, by time of operations
during the evaluation of data protection algorithms on GPU is relevant. Moreover, in
work [48] it is spoken about potential possibility of such attacks, however it is supposed
that their application will not be effective or can be impossible at the minimum change
of a way of realization of algorithm of protection of confidentiality of data.

One of the ways to protect against analysis timing attacks is to implement
transformations without storing special substitution tables, which allow efficient
implementation of data protection algorithms [6; 29; 50; 72]. This requires representing
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all transformations using logical operations, which leads to high running times of the
data protection algorithms without additional optimizations.

In [9] a new approach to such optimizations was proposed, which consists in the
fact that instead of performing operations on a single argument by using the registers
of the computing device, parallel calculation of the values of the encryption algorithm
is possible. In this case, the greater the length of the register of the computing device,
the higher the performance of such an implementation. In the literature, this method
is called the bitslice implementation and is currently actively used for data encryption,
[7; 69], which ensures that the timing attacks are impossible in the case of both the
CPU and the GPU, [62].

The efficiency of bitslice implementations directly depends on the number of
logical operations needed to compute the nonlinear transformation. Thus, to be able
to use bitslice implementations of an encryption algorithms, nonlinear transformations
must be «easy to implement», which suggests that they are expected to meet
similar requirements to those of low-resource nonlinear transformations, [57]. At
the same time, the synthesis of permutations for low-resource devices uses either
low-dimensional permutations (over F4

2, F5
2) a priori easier to implement than high-

dimensional permutations, or nonlinear bijective transformations which are represented
by a composition of functions with arguments of lower dimensionality, [14; 18; 63].
Currently, there are three main universal approaches to constructing nonlinear bijective
transformations in the form of logic elements: full search using graph traversal in
depth and using the meet-in-the-middle method ([21; 40; 78]), heuristic search ([80;
37; 40; 71]) and the use of algebraically defined permutations (in particular, inverse
permutations), [63].

At the same time, the synthesis of encryption algorithms must use nonlinear
transformations that allow to confront the knownmethods of analysis. The effectiveness
of linear attacks [36; 45; 59], differential attacks [10; 36] and some types of algebraic
attacks [23; 39; 68; 76] directly depends on the cryptographic properties of the
permutations [19]:

– nonlinearity;
– differential δ-uniformity;
– algebraic degree and algebraic degree of inverse permutation;
– graph algebraic immunity.

The cryptographic properties of low-dimensional permutations are well studied, but
they are far from similar values even for large-dimensional random permutations.
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Thus, their use in the synthesis of promising encryption algorithms, requires the
implementation of a larger number of permutations while maintaining the same security
level.

In view of the above, there are many reasons for constructing higher-dimensional
permutations using functions defined over lower-dimensional spaces:

– is possible to implement in software with substitution tables (T-tables),
– is possible to implement a transformation with a small number of logical
operations,

– is possible to use these permutations to implement ligtweight algorithms,
– is possible to use effective hardware masking [14; 51].

There are a large number of ways to build such nonlinear transformations: based on the
Feistel network [18; 33; 54], using a Misty network [18; 34; 58], SPN networks [53; 70;
75] or other designs [74]. At the same time, for the nonlinear bijective transformations
listed above, the cryptographic characteristics are usually not higher than those obtained
by random search.

Thus, the relevant task is to design non-linear bijective transformations, which
can be represented using functions of arguments of lower dimensionality, whose non-
linearity indices will be better than those of similar ones obtained by random search.
One such way is based on the use of a “butterfly” type construction, which was proposed
in [67] during the study of the possibility of decomposition of the well-known 6-bit
differentialy 2-uniform permutation [15] and the method of decomposition construction
for the nonlinear transformation of Russian cryptographic standards [11].

Constructive features of permutations defined by the “butterfly” type construction
may affect the security of the data confidentiality algorithm. According to paragraph 27
of the Doctrine of Information Security of the Russian Federation [3] in the synthesis
of information security algorithms must be at the stage of development to guarantee
the impossibility of various attacks, which indicates the relevance of research of the
influence of the properties of the proposed nonlinear bijective transformations on the
security of the algorithm as a whole.

The aim of this work is to improve algorithmic methods of information security,
when they are functioning in an untrusted environment, through the development of
new principles of nonlinear bijective transformations.
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In order to achieve this goal, it was necessary to solve the following tasks:
1. Evaluate the security level of encryption algorithms when implemented on

heterogeneous platforms, allowing an intruder to obtain information about the
execution time.

2. Development of newways to build nonlinear bijective transformations, the use
of which reduces the effectiveness of the known and attacks represented in this
work. Evaluation of the main cryptographic characteristics of the proposed
permutations.

3. Development of new attacks based on the properties of the proposed nonlinear
bijective transformations.

Academic novelty:
1. A new attack on data privacy algorithms implemented on GPU, using

information about the execution time, is proposed.
2. New classes of nonlinear bijective transformations are proposed, and

algorithms for their construction are developed.
3. A new invariant attack on XSL-networks is proposed.
The theoretical value of this dissertation research lies in the development of

mathematical methods and models used in the synthesis and analysis of symmetric
encryption algorithms, including their implementation in untrusted environments.

An attack on encryption algorithms implemented on GPU, using information
about the execution time, is proposed. It is shown that in spite of the high complexity and
lack of published data about the architectural features of the modern GPU platforms,
it is possible to propose an attack, which allows to restore sequentially the unknown
to the advertiser parameters.

Using the discrete function theory, as well as finite field theory, new families of
nonlinear bijective transformations and algorithms of their construction are proposed
and estimates of their cryptographic characteristics are obtained. The developed
mathematical apparatus makes it possible to guarantee properties for a sufficiently wide
family of nonlinear bijective transformations.

A new invariant attack on XSL-networks, using the apparatus of graph theory and
linear algebra, is proposed. With its use it is possible to obtain estimates of resistance
for modern and promising encryption algorithms or to guarantee the impossibility of
such attacks.
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The practical significance of this dissertation research is as follows:
1. The new attack showed low security of the AES algorithm when implemented

in an untrusted environment on GPU using pre-calculated tables, as confirmed
by independent studies [20; 62]. It is shown that for the Russian standardized
encryption algorithm [2], the application of the specified method is not
effective.

2. New families of nonlinear bijective transformations, allow their use in the
synthesis of promising algorithms for data privacy protection.

3. The security level of the standardized encryption algorithm [2] is not reduced
with respect to the attack developed in this research.

4. The results obtained in the dissertation study can be used in the educational
process in the preparation lecture courses.

The thesis research applies the mathematical apparatus and approaches of various
sections of mathematics, such as discrete mathematics, finite field theory, graph theory,
algorithm theory, as well as experimental studies of the proposed primitives and
algorithms.

The main results:
1. An attack on special form encryption algorithms implemented on GPU, based

on the information about the execution time.
2. New parametric families of permutations and evaluation of their cryptographic

characteristics: nonlinearity, algebraic degree, differential δ-uniformity.
3. A new invariant attack on XSL-network based encryption algoritms.
The reliability of the obtained results is confirmed by the correctness of

the problem statement and the applied research methods, provided by rigorous
mathematical proofs of the statements and confirmed by their consistency with the
results of experimental studies. In addition, the results obtained in this dissertation
research are in accordance with the results obtained by other authors:

– In works [20; 62] points out that the timing attacks on symmetric encryption
algorithms of special kind, implemented on GPU, is applicable in the practical
implementation of cloud computing.

– Later works also investigated the issue of using the execution time of
operations in the implementation of symmetric encryption algorithms, but
using a different approach (see e.g. [31; 41––43]).
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– Independent author [24; 25] obtained nonlinear bijective transformations
similar to the one parametric family of permutations presented in the thesis,
and having the same cryptographic characteristics.

– Experimental studies of the nonlinear bijective transformations proposed by
the author were independently investigated in [30; 47].

– In [17], in particular, it is shown that the round transformations of the
Kuznyechik algorithm do not have nonlinear invariants of special form, which
does not contradict the results obtained by the author.

Approbation of the obtained results. The main results of the thesis research
were presented at the following international and All-Russian conferences:

– 2023, The 12th Workshop on Current Trends in Cryptology CTCrypt 2023
(Volgograd), June 6-9, 2023, report: “Computational work for some TU-based
permutations”.

– 2023, The 12th Workshop on Current Trends in Cryptology CTCrypt 2023
(Volgograd), June 6-9, 2023, report: “On one way of constructing unbalanced
TU-based permutations”.

– 2021, The 23th “RusCrypto’2021” (Solnechnogorsk), March 23-26, 2021,
report: “Resistance of the Kuznyechik algorithm to a generalized invariant
attack”.

– 2021, The 10th Workshop on Current Trends in Cryptology CTCrypt 2021
(Ruza), June 1-4, 2021, report: “On Differential Uniformity of Permutations
Derived Using a Generalized Construction”.

– 2021, The 10th Workshop on Current Trends in Cryptology CTCrypt 2021
(Ruza), June 1-4, 2021, report: “On the Impossibility of an Invariant Attack on
Kuznyechik”.

– 2021, The 20th International Conference ”Siberian Scientific School-Seminar
”Computer Security and Cryptography SIBECRYPT’21 named after G.P.
Agibalov (Novosibirsk), September 6-11, 2021, report: “On the way of
constructing differentially 2δ-uniform permutations over F22m”.

– 2021, The 20th International Conference ”Siberian Scientific School-Seminar
”Computer Security and Cryptography SIBECRYPT’21 named after G.P.
Agibalov (Novosibirsk), September 6-11, 2021, report: “On a heuristic
approach to constructing bijective vector Boolean functions with given
cryptographic properties”.
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– 2020, The 9th Workshop on Current Trends in Cryptology CTCrypt 2020
(Ruza), September 15-17, 2020, report: “A compact bit-sliced representation
of Kuznechik S-box”.

– 2019, The 8th Workshop on Current Trends in Cryptology CTCrypt 2019
(Svetlogorsk), June 3-7, 2019, report: “On the Way of Constructing 2n-Bit
Permutations from n-Bit Ones”.

– 2019, The 18-th All-Russian Conference ”Siberian Scientific School-
Seminar with International Participation ”Computer Security and
Cryptography”SIBECRYPT’19 (Tomsk), September 9-14, report: “Hardware
implementation of one class of 8-bit permutations”.

– 2018, VII Workshop on Current Trends in Cryptology CTCrypt 2018 (Suzdal),
May 28-30, 2018, report: “New classes of 8-bit permutations based on a
butterfly structure”.

– 2018, XIX All-Russian Symposium on Applied and Industrial Mathematics
(autumn session) (Sochi), September 22-30, 2018, report: “On approaches to
the construction of lightweight nonlinear transformations”.

– 2015, The 4th Workshop on Current Trends in Cryptology CTCrypt 2015
(Kazan), June 3-5, 2015, report: “A timing attack on CUDA implementations
of an AES-type block cipher”.

Content of work. The results of the thesis research can be divided into the
following chapters:

1. Evaluation of the possibility of using the information about the execution
time of operations to violate the security properties of symmetric encryption
algorithms which are implemented on GPUs.

2. Selection of primitives for the construction of non-linear bijective
transformation to ensure the effectiveness of software and hardware
implementation.

3. Construction of parametric families of permutations and evaluation of their
cryptographic characteristics.

4. Evaluation of the impact of design features of the proposed parametric families
of permutations on the security of symmetric encryption algorithms.

Let us outline the main results of the thesis research. To begin with, we introduce
the necessary notations.



10

We will call a two-element field a set F2 = {0,1} with naturally
given operations of addition “+” and multiplication “·”. Let (Fn

2 ,+) ={
(a0, a1, . . . , an−1), ai ∈ F2, i ∈ 0,n− 1

}
— arithmetic vector space of dimension

n, θ = (0,0, . . . , 0) — zero of vector space. If we consider the additive group of
vector space (Fn

2 ,⊕) and specify the multiplication operation in a special way, we can
construct a finite field which we denote by (F2n,+, ·).

First chapter of this dissertation research is devoted to the study of the principle
capability of an adversary to recover unknown data using information from side
channels.

Historically, the first attack using information from side channels is the recovery
of key information of public key data algorithms [46] by their running time on a CPU.
With the development of science, new methods of analysis using the information from
a variety of information leakage sources: signals in the power supply channel, signals
from electromagnetic radiation, temperature information or sounds made by the device
[49; 79].

Prior to 2015, there were no known attacks on cryptoalgorithms implemented
on GPU, based on information from side channels of leakage. At the CTCrypt’15
conference, the first such analysis method was presented, where information about the
execution time of the encryption algorithmwas used as a side channel. Later, in October
2015, at the ICCD’15 conference, authors presented a paper, [73], which proposed an
attack using information obtained from the power circuit of a GPU.

The first chapter is devoted to the description of the attack presented at
CTCrypt’15 and later published in [81]. The subject of the first chapter was the
implementation of an encryption algorithm implemented on a GPU using the most
efficient approach based on the precomputed tables, [29; 38; 44]. The object of the
study is — an XSL network based block cipher. For the purpose of this chapter, we
will assume that n is a block size in bits,m is a number of permutations on subvectors
of length n′, n = n′ · m.

The following transformations are used in the implementation of the algorithms
from the proposed family:

– Addition of an unknown parameter, called a round key: X[K] : Fn
2 →

Fn
2 , где X[K](a) = K ⊕ a; a,K ∈ Fn

2 .

– A nonlinear transformation that is a parallel application of the permutations
of the space Fn′

2 : S: Fn
2 → Fn

2 , S(a) = S(a1, . . . ,as) = (π(a1), . . . ,π(am)),

ai ∈ Fn′

2 , π ∈ S
(
Fn′

2

)
, i = 1, . . . ,m.
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– Linear transformation: L: Fn
2 → Fn

2 , L(a) = a · L′, where L′ ∈ GLn.

When implementing the symmetric encryption algorithm, the operations described
above are iteratively applied, with each iteration called a round.

In the case wherem is the square of some natural numberm = k2, we can assume
that transformations of algorithms from the proposed family are performed over the
elements k × k of the matrix:

x0,0 x0,1 · · · x0,k−1

x1,0 x1,1 · · · x1,k−1

· · · · · · · · · xk−1,k−1

xk−1,0 xk−1,1 · · · xk−1,k−1

 ,

xi,j ∈ Fn′

2 , i,j = {0, 1, . . . , k − 1}. In this case, a linear transformation can be defined
by a composition of two transformations: multiplication of some reversible matrix by
each column of the matrix and permutation of matrix elements so that each row and
each column of the resulting matrix contains an element of each of k columns of the
original matrix. Such linear transformations will be called A-type transformations. The
AES encryption algorithm, [26] and GOST 34.11-2018 [1] hash function use A-type
linear transformations. Within this chapter, the intermediate value obtained after the
i-th iteration of the encryption algorithm under consideration will be denoted by

x(i) =


x
(i)
0,0 x

(i)
0,1 · · · x

(i)
0,k−1

x
(i)
1,0 x

(i)
1,1 · · · x

(i)
1,k−1

· · · · · · · · · x
(i)
k−1,k−1

x
(i)
k−1,0 x

(i)
k−1,1 · · · x

(i)
k−1,k−1

 ,

x
(i)
i,j ∈ Fn′

2 , i,j = {0, 1, . . . , k − 1}, x(0) is a plain text. For ease of explanation, we will
use the notation x(i)[j,k] for the value x(i)j,k, j,k = {0, 1, . . . , k − 1}.

Proposition 1. [81] For the encryption algorithmwith the A-type linear transformation
an arbitrary value x(2)i,j , i,j ∈ {1, . . . , k − 1}, after the first round is defined by exactly
k values on the first round of transformations and in order to fix the value x

(2)
i,j as a

constant, there are 2n′·k−1 ways to choose these k values after the X operation on the
first round of the algorithm.
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Consider the AES algorithm for which k = 4. Denote the value obtained after
the key overlay in the first round by a matrix:

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

x3,0 x3,1 x3,2 x3,3

 ,

xi,j ∈ F8
2, i,j = {0, 1, . . . , 3}. According to the statement 1 there are 224

ways to set the value x
(2)
i,0 by some constant for arbitrary i ∈ {0, . . . , 3}

by setting the values x0,0, x1,1, x2,2, x3,3 in a special way. Other than that:
can be set as a constant: by setting in a special way:{
x
(2)
i,0 , i = 0, . . . , 3

}
{x0,0, x1,1, x2,2, x3,3}{

x
(2)
i,1 , i = 0, . . . , 3

}
{x0,1, x1,2, x2,3, x3,0}{

x
(2)
i,2 , i = 0, . . . , 3

}
{x0,2, x1,3, x2,0, x3,1}{

x
(2)
i,3 , i = 0, . . . , 3

}
{x0,3, x1,0, x2,1, x3,2}

and it is possible to do it in 224 ways.
To recover the key in the first round, the following property of shared memory

used to store replacement tables applies: 32 threads access memory at the same time,
all memory cells are divided into 32 banks, the access speed of which is directly
proportional to themaximum number of accesses to the samememory bank. In this case,
the memory access speed will be minimal when all threads access the same memory
bank, or when no pair of threads accesses the same memory bank, [64]. Using this
property, it is possible to recover all k of key values having length n′ · k. Thus, 2n′·k

by different ways of choosing the input data of encryption algorithm can determine the
time when the speed of implementation was minimal, which allows to recover the key
in the first round. Similarly, it is possible to recover the rest of the round keys. As an
illustration, let us describe the way of recovery of the first round key

K =


k
(1)
0,0 k

(1)
0,1 k

(1)
0,2 k

(1)
0,3

k
(1)
1,0 k

(1)
1,1 k

(1)
1,2 k

(1)
1,3

k
(1)
2,0 k

(1)
2,1 k

(1)
2,2 k

(1)
2,3

k
(1)
3,0 k

(1)
3,1 k

(1)
3,2 k

(1)
3,3


of AES algorithm (see algorithm 1). Realization of the random variable x that has
a uniform distribution on the set D will be denoted by: x U←− W , the function
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that calculates the time of the encryption procedure of the algorithm EK of data
D1, D2, . . . , DM will be denoted by time (EK , {D1, D2, . . . , DM}). When describing
the algorithm, we will also use the integer division operation “\”.

Algorithm 1: Recovering keys k10,0,k11,1,k12,2,k13,3 of AES algorithm
Data: Black box EK , implementing the AES encryption algorithm,M is a

parameter
for i = 1 toM do

for j = 0 to 3 do
for k = 0 to 3 do

xj,k
U←− F8

2

Di ←


θ x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

x3,0 x3,1 x3,2 x3,3

 · L−1
T0 = time (EK , {D1, D2, . . . , DM})
for n = 1 to 232 − 1 do

for i = 1 toM do
for j = 0 to 3 do

Di[j,j]← Di[j,j]⊕
((
(n⊕ (n− 1)) \28·j

)
(mod 28)

)
Tn = time (EK , {D1, D2, . . . , DM})

Result: argmin
n∈{0,1,...,232−1}

Tn

The values k10,0,k11,1,k12,2,k13,3 are uniquely determined by the value given by the
algorithm 1. Similarly, the value of the entire key of the first round is recovered.

Thus, the complexity of key recovery of the considered algorithm is equal to 2n′k

operations of calculating values of a special kind. The parameterM of the algorithm 1
is chosen experimentally. In the paper [81] the data and graphs showing the practical
applicability of the proposed method of analysis are given.

Thus, it is shown that the use of precalculated replacement tables to implement
symmetric encryption algorithms, potentially allows an adversary to recover unknown
parameters. Moreover, to implement side-channel attacks, the memory access operation
is often studied, as it is considered one of the most informative for the adversary, [28;
31; 35; 55; 73].

It follows from the above that to protect against the considered attacks and
a number of other analysis methods, it is necessary to use an implementation of
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transformations for which there is no need to access memory, that is, using only logical
operations (e.g., bitslice-realization). However, it can lead to low implementation
speed of data privacy protection algorithms. Thus, it is necessary to choose a
nonlinear bijective transformation design with guaranteed availability of an efficient
implementation.

The second chapter of the thesis research is devoted to the choice of primitives
for the construction of a nonlinear bijective transformation, allowing to guarantee the
efficiency of software and hardware implementation.

In 2016, a group of authors investigated the possibilities of representing some
permutations with “good” cryptographic properties using functions defined over spaces
of lower dimensionality. As a result of the study, an approach to construct permutations
based on the so-called TU -representation [12; 66], which in some sense can be
considered a generalization of the two-round Feistel network, was proposed. The
permutations based on this principle will be called F -constructions (Feistel-like
constructions). The nonlinear bijective transformation used in domestic standardized
algorithms as well as the CCZ-equivalent permutation of the only known differential 2-
uniform permutation of spaces of the form F2m

2 , have a TU representation, [12; 66; 67].
At present, the most promising in terms of implementation of data privacy

protection algorithms is the use of transformations from the symmetric group S
(
F8
2

)
,

which have “good” nonlinearity indexes. The nonlinear bijective transformation of
Kuznyechik algorithm is represented as a composition of the following functions
(see figure 1): function F4

2 → F4
2, permutations from the symmetric group S

(
F4
2

)
,

multiplication in the field F24, multiplexer (conditional operator), linear functionsGL8.
Let us consider a way to determine the complexity of each of these functions.

In [78] the search and construction of all permutations of the space F4
2 realized in less

than 12 logical operations, as well as copying operations MOV. This represents about
90% of all permutations, and efficiently implemented representatives were found for
271 out of 302 affine equivalence classes. A differentially 4-uniform permutation was
constructed, which can be realized by only 9 operations, has a nonlinearity equal to
4, and an algebraic degree equal to 2. In [78], not all 4-bit permutations have been
constructed, and the question of the minimal representation of a sufficiently broad class
of permutations remains open at present. Among the 16 classes of affine equivalence
having a differential uniformity and nonlinearity equal to 4, only for 7 classes were
efficiently implemented representatives found (from 9 to 13 operations AND, OR, XOR,
NOT, MOV).
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Рисунок 1 –– TU-representation of Kuznyechik algorithm [12]

In [22] the author explores a different base, consisting only of operations AND
and XOR. The rejection of the MOV operation was due to the fact that the authors are
focused primarily on a hardware implementation, where the copy operation does not
require additional resources. Limiting the basic operations to AND and XOR is due
to the fact that using only these operations facilitates the creation of the so-called
threshold implementation of permutations that allows to counteract the methods that
use information from the side channels. Russian specialists in [21] present the results
of a study devoted to the search of F4

2 space permutations implemented in the AND and
XOR bases in more than 11 instructions. For a number of permutations for which no
efficiently implemented representatives were found in [78], the authors of [21] give
estimates of the number of instructions used. It is worth noting that, in general, it is
not entirely correct to compare the results of [78] and [21] due to differences in the
basis. For another 7 classes of 16 having a differential and nonlinearity index equal to
4, effective representatives were found (but already in the AND and XOR bases).

It is worth noting that monomial permutations of theF4
2 space are either linear (the

labor intensity of their implementation is easy to determine), or are linearly equivalent
to the inverse permutation, the implementation of which has been well studied, [61;
65; 77].

In general, however, finding an efficient implementation of a particular function
or permutation F4

2 → F4
2 is a rather time-consuming task, [16]. In this regard, various

heuristic algorithms are often used in solving this problem. The most well-known
algorithms are ESPRESSO [71] and BOOM [37], which are implemented in a large
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number of commercial packages. Russian authors presented their analogue, which
was used in the search for a minimal permutation representation of the Kuznyechik
algorithm in [80].

Multiplication in the field is obviously a quadratic form and is effectively
implemented, [80]. Separately, it is necessary to consider the labor intensity of
multiplexer implementation. According to [12] the following calculations take place:
“If r = θ then l = ν0(l) otherwise l = ν1(l ·I(r))”, where ν0,ν1, I are nonlinear
bijective functions of space F4

2. Consider an indicator function taking a value equal to
1 at the point r = θ and zero at all other points:

Indθ(r) = r̄1 · r̄2 · r̄3 · r̄4 = r1 + r2 + r3 + r4.

It is implemented in 4 logical operations, its negation — in 3. Then the calculation of
l is done by the equation:

l = Indθ(r) · ν0(l) + Indθ(r) · ν1(l · I(r)).

The calculation of this function can be simplified as follows:

l = Indθ(r) · (ν0(l)⊕ ν1(θ))⊕ ν1(l · I(r))

since I is a monomial permutation. Obviously, the implementation is the more efficient
the smaller the weight of the value ν1(θ).

Thus, we choose as primitives for constructing the permutations of F8
2 space the

permutations of F4
2 space, as well as the multiplication operation in the field F24 and

multiplexer. It is desirable that the permutations of the F4
2 space be either monomial,

have a fixed point at zero, or be linear. Obviously, the smaller number of nonlinear
transformations used leads to higher implementation efficiency.

The permutations considered below at different values of parameters are
implemented using from 2 to 6 permutations of the space F4

2. In this case, the most
effective permutation F (x1, x2) = (y1, y2) (in terms of the number of nonlinear
transformations used) is the bijective function defined by the following equations:

1. x′ = x−1

2. y′ = y−1

3. x′′ = x · y′

4. y′′ = x′ · y′

5. if x = θ then y1 = y′ else y1 = y′′

6. if x = y then y2 = x′ else y2 = x′′
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In addition, the results of [92] show the efficiency of implementing the nonlinear
bijective transformations defined in the thesis study on hardware platforms.

The third chapter of this dissertation research is devoted to the construction of
nonlinear bijective transformations and evaluation of their cryptographic properties.We
describe the main cryptographic characteristics of nonlinear bijective transformations
used in the analysis of symmetric cryptographic algorithms, [19].

When designing encryption algorithms, it is necessary to use permutations to
resist knownmethods of analysis. The effectiveness of linear [36; 45; 56; 59], difference
[10; 36; 56] and some types of algebraic analysis methods [23; 39; 68; 76] depends
directly on the cryptographic characteristics of the nonlinear transformations used in
the algorithm. Such characteristics (for a fixed value of n) are as follows:

– non-linearity of the permutation;
– differentially δ-uniformity of the permutation;
– algebraic degrees of permutation and inverse permutation;
– algebraic immunity of the permutation.

Definition 1 ([82]). Let F1, F2 : Fm
2 ×Fm

2 → Fm
2 — arbitrary (2m,m)-functions. Let us

define the transformation F (x1, x2) = (y1, y2), which we will call F -construction (see
figure 2), by the following system:y1 = F1 (x1, x2)

y2 = F2 (x2, y1)
. (1)

F1

2F

x1 x2

y
2

y
1

Рисунок 2 –– F -construction

The F -construction is the basis for the construction of nonlinear bijective
transformations in this dissertation study.

Proposition 2 ([12; 82]). LetF1, F2 : Fm
2 ×Fm

2 → Fm
2 be such functions for which, given

a fixed arbitrary z2 function Fi(z1,z2), i ∈ 1,2 is bijection on the variable z1. Then
1) transformation F is a permutation on the set Fm

2 × Fm
2 ,
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2) the total number of permutations F that are defined by the equations (1) is
(2m!)2

m+1

.

Thus, to set nonlinear bijective transformations defined by F -construction, one
must choose F1, F2-functions satisfying the statement 2. The construction of balanced
(n,m)-functions having nonlinearity not lower than some boundary N is a difficult
problem at large values of the boundary N and at n ⩾ 8 and m ⩾ 4. One well-known
approach is to construct balanced (n,m)-functions from unbalanced (n,m)-functions
with high nonlinearity (see e.g. [27]), which is investigated in the thesis study by
choosing Fi, i ∈ 1,2 functions in the equation (1).

Let s′(x,y) be a function of Fm
2 × Fm

2 → Fm
2 and for some ẏ ∈ Fm

2 , the function
s′ (x,ẏ) is not a permutation on the variable x. Then such a point ẏ will be called a
punctured point of the function s′. The set of punctured points of the function s′ will
be denoted by Ẏ ⊆ Fm

2 :

Ẏ = {ẏ : |{s′(x,ẏ), x ∈ Fm
2 }| < 2m} .

In the case where Ẏ is not empty, we can redefine a function at each punctured
point ẏ ∈ Ẏ and construct a new function s(x,y) such that s : Fm

2 × Fm
2 → Fm

2 is a
permutation on the variable x ∈ Fm

2 while fixing an arbitrary value y ∈ Fm
2 . Let π̂y(x),

y ∈ Ẏ be permutations of Fm
2 space, then set (2m,m)-function s as follows:

s(x,y) =

s′(x,y), y ̸∈ Ẏ

π̂y(x), y ∈ Ẏ
. (2)

In order to estimate the nonlinearity of the function s(x,y) it is necessary to be able
to calculate the Walsh–Hadamard transform of this function. For the functions s′ (x,ẏ),
ẏ ∈ Ẏ , as functions of one variable x, let us introduce the notation gẏ(x).

Proposition 3 ([82]). Let s′(x,y) — (2m,m)-function with a set of punctuated points
Ẏ , π̂ẏ — set of permutations on Fm

2 , ẏ ∈ Ẏ . Let us define (2m,m)-function s(x,y) with
no punctured points by the equation (2). Let α,β,γ ∈ Fm

2 , then the coefficients of the
Walsh–Hadamard transform s be calculated by the following equation:

Wα∥β,γ
s =


W

α∥β,γ
s′ +

∑
ẏ∈Ẏ

(−1)⟨β,ẏ⟩
(
Wα,γ

π̂ẏ
−Wα,γ

gẏ

)
, α ̸= θ

W
α∥β,γ
s′ +

∑
ẏ∈Ẏ

(−1)⟨β,ẏ⟩ (2 · wt (⟨γ, gẏ(x)⟩)− 2m) , α = θ,γ ̸= θ

W
α∥β,γ
s′ , α = θ,γ = θ

. (3)
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We can obtain the following estimate for the linearity of the function s,
constructed using the equation 2.

Corollary 1 ([82]). Under the conditions of the statement 3, the following upper bound
on the linearity of the Ls function s is:

Ls ⩽ max

Ls′ +
∑
ẏ∈Ẏ

(
Lπ̂ẏ

+ Lgẏ(x)

)
, Ls′ +

∑
ẏ∈Ẏ

∣∣∣∣2m − 2 · min
γ∈Fm

2 \θ
wt (⟨γ, gẏ(x)⟩)

∣∣∣∣
 .

Let us consider the problem of constructing a function s with linearity no higher
than some bound of L. Then, we can search for functions s′ and π̂y such that the upper
bound obtained by 1 will be less than L. Since every summand in∑

ẏ∈Ẏ

(
Lπ̂ẏ

+ Lgẏ(x)

)
and

∑
ẏ∈Ẏ

|2m − 2 · wt (gẏ (x))|

is a non-negative integer (or even positive, since for any permutation π its linearity is
greater than 0, Lπ > 0), then for the same value of linearity of function s′ the function
s obtained by the equation (2) potentially has the greater linearity the more points the
function s′ has punched points.

Indeed, let (2m,m)-function s′ be given, which has exactly one punctured point ẏ.
Let g(x) = s (x, ẏ) and let π̂ be a permutation on Fm

2 . Let us define (2m,m)-function
s with no punctured points as follows:

s(x,y) =

s′(x,y), y ̸= ẏ

π̂(x), y = ẏ
. (4)

For such functions, we can get a potentially smaller estimate on linearity Ls.

Corollary 2 ([82]). Let s be a (2m,m)-function given by the equation (4). Then the
following upper bound on linearity of Ls of function s is true:

Ls ⩽ max

{
Ls′ + Lπ̂ + Lg, Ls′ +

∣∣∣∣2m − 2 · min
γ∈Fm

2 \θ
wt (⟨γ, g(x)⟩)

∣∣∣∣} .

Due to the consequence 2, the functions s′ which have only one punctured point
ẏ are of most interest.

Let us show that with additional constraints on the function g it is possible to
specify an upper bound on the linearity of the function s. For example, when an arbitrary
nondegenerate linear combination of coordinate functions g(x) is identically equal to 0
or 1, which is equivalent to the fact that the function g(x) is a constant.
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Proposition 4 ([82]). Let s′ be (2m,m)-function having exactly one punctured point ẏ,
g(x) = s′ (x, ẏ), π̂ is a permutation on Fm

2 . Let us define (2m,m)-function s by the
equation (4).

Then, if an arbitrary linear combination of function g(x) is either 0 or 1, then the
coefficients of Walsh–Hadamard transform of function s(x,y) for arbitrary α,β,γ ∈
Fm
2 are evaluated by the following equation:

Wα∥β,γ
s =


W

α∥β,γ
s′ + (−1)⟨β,ẏ⟩ ·Wα,γ

π̂
, α ̸= θ

0, α = θ,γ ̸= θ

W
θ∥β,θ
s′ , α = θ,γ = θ

. (5)

Let us show that there exist functions s′ such that an arbitrary linear combination
of coordinate functions g(x) is identically equal to 0 or 1 and the function s′ itself has
sufficiently high nonlinearity. For example, an arbitrary (2m,m) bent function with a
single punctured point has this property.

Proposition 5 ([82]). Let b(x,y) : Fm
2 × Fm

2 → Fm
2 be a bent-function having exactly

one punctured point ẏ. Then an arbitrary linear combination of coordinate functions
g(x) = b (x,ẏ) is identically equal to 0 or 1.

Corollary 3 ([82]). Under the assertion 4, the upper and lower bounds on the linearity
of the Ls function s are given by the following inequalities:

Ls′ − Lπ̂ ⩽ Ls ⩽ Ls′ + Lπ̂.

If s′ a vectorial bent-function, then

Ls′ < Ls ⩽ Ls′ + Lπ̂.

In particular, the corollary 3 guarantees a way to construct (2m,m)function s by
the equation (4) with nonlinearity at leastLs ⩽ Ls′+Lπ̂. In the casem = 4, the smallest
possible value of Lπ̂ is 4. Then using s′ as a bent-function we can obtain (8,4)-function
which has linearity 12.

Let s′1 and s′2 be two (2m,m)-functions with the punctuated points ẏ1 and ẏ2,
respectively, π̂1 and π̂2 are two permutations over Fm

2 . Let’s define the functions F1

and F2 according to the equation (4) and determine the permutation F ∈ S
(
F2m
2

)
,

F (x1, x2) = (y1, y2), using the F -construction by the equation (1):

y1 = F1(x1,x2) =

s′1 (x1,x2) , x2 ̸= ẏ1

π̂1 (x1) , x2 = ẏ1
, (6)
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y2 = F2 (x2,y1) =

s′2 (x2,y1) , y1 ̸= ẏ2

π̂2 (x2) , y1 = ẏ2
. (7)

According to the assumptions used in fixing arbitrary x2 ̸= ẏi, the function
s′i (x1,x2) (for arbitrary i ∈ 1,2) is bijective on the variable x1. Then for x2 ̸= ẏi

there are correctly defined bijective mappings s′−1i (y, x2) as functions on one variable
y when x2 ̸= ẏi is fixed. Similarly, the functions F−1i (y,x2) are correctly defined as
permutations on the variable y when x2 ∈ Fm

2 is fixed.
Let’s define an expression for the permutation F−1(y1, y2) = (x1, x2) that is

inverse to F : (6)–(7):

x2 = F−12 (y1, y2) =

s′−12 (y2,y1), y1 ̸= ẏ2

π̂−12 (y2), y1 = ẏ2
, (8)

x1 = F−11 (y1,x2) =

s′−11 (y1,x2) , x2 ̸= ẏ1

π̂−11 (y1), x2 = ẏ1
. (9)

Thus F−12 , like F−11 , are functions of the form (4) with one punctured point, and the
values of y2 and x1 are not directly expressed through x1, x2 and y1, y2 respectively. For
example, y2 is expressed through x1 and x2 from (7) by a rather complicated equation:

y2 =



s′2 (x2,s
′
1(x1, x2)) , x2 ̸= ẏ1, s

′
1(x1,x2) ̸= ẏ2

s′2 (x2,π̂1(x1)) , x2 = ẏ1, π̂1(x1) ̸= ẏ2

π̂2 (x2) x2 ̸= ẏ1, s
′
1(x1,x2) = ẏ2

π̂2 (x2) x2 = ẏ1, π̂1(x1) = ẏ2

. (10)

By setting the constraints on the functions s′1 and s′2 we can simplify the expressions for
y2 as a function of x1, x2 and x1 as a function of y1, y2 and reduce it to the form (4).

Proposition 6 ([82]). Let the permutation F (x1, x2) = (y1, y2) is given by the equations
(6)–(7). Let also

1. π̂1(x1) = ẏ2 ⇔ F1 (x1, x2) = ẏ2,
2. x2 = ẏ1 ⇔ F2 (x2, y1) = π̂2 (ẏ1).

Then
1. y2 is expressed in terms of x1, x2 by the following equation:

y2 = FI2(x1, x2) =

s′2 (x2, s
′
1(x1,x2)) , x1 ̸= π̂−11 (ẏ2)

π̂2 (x2) , x1 = π̂−11 (ẏ2)
, (11)
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2. x1 is expressed in terms of y1, y2 by the following equation:

x1 = FI1(y1, y2) =

s′−11

(
y1, s

′−1
2 (y2,y1)

)
, y2 ̸= ẏ1

π̂−11 (y1) , y2 = ẏ1
. (12)

Thus, if the conditions of the 6 statement are true, the permutation F (x1, x2) =

(y1, y2) is given by the equations (6) and (11), and the reverse permutationF−1(y1, y2) =
(x1, x2) is given by the equations (8) and (12). Each of these equations is given by
a equation of the form (4) using functions with one punctured point. Let’s list these
functions:

– y1 at x2 ̸= ẏ1 is given by the equation s′1 (x1,x2);
– y2 at x1 ̸= π̂−1 (ẏ1) is given by the equation s′2 (x2,s′1(x1,x2)) = s′′(x2, x1);
– x1 at y2 ̸= ẏ1 is given by the equation s′−11

(
y1,s

′−1
2 (y2, y1)

)
= s′′1(y1, y2);

– x2 at y1 ̸= ẏ2 is given by the equation s′−12 (y2,y1).
Since the nonlinearity of F equals the nonlinearity of F−1, we can propose an algorithm
for constructing a permutation with linearity no higher than L based on the statements
4 and 6, described in detail in [82].

If the conditions of the statement 6 are true, it is possible to guarantee the maximal
possible algebraic degree of permutations F and F−1. In this case, the permutations F
and F−1 are expressed by the equations:

(y1, y2) = F (x1, x2) = (F1 (x1, x2) , F I2 (x1, x2)) , (13)

(x1, x2) = F−1 (y1, y2) =
(
FI1 (y1, y2) , F

−1
2 (y1, y2)

)
.

Definition 2. A (2m,m)-function s′(x,y) will be called a function with one punctured
point ẏ if for all y ̸= ẏ the function s′(x,y) is a permutation for the variable x and
s′ (x,ẏ) is not a permutation for the variable x. If s′ (x,ẏ) = const, then such a function
will be called C-function with a punctured point ẏ.

In the case where the meaning of the gouged point is clear from the context, we
will simply talk about the C-function.

Proposition 7 ([85]). Let the permutation F is defined by the equation (13). Then
– if deg (s′i) ̸= 2m− 1 and (2m,m)-function s′i is a C-function, then

deg (Fi) = 2m− 1⇔ deg (π̂i) = m− 1, i ∈ 1,2;
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– if deg
(
s′−1i

)
̸= 2m− 1 and (2m,m)-function s′−1i is a C-function, then

deg
(
F−1i

)
= 2m− 1⇔ deg (π̂1) = m− 1, i ∈ 1,2;

– if deg (s′i) ̸= 2m− 1 and (2m,m)-function s′i is a C-function, then

deg (FIi) = 2m− 1⇔ deg (π̂2) = m− 1, i ∈ 1,2.

Corollary 4 ([85]). Let all the conditions of the statement 7 and

deg (Fi) = deg
(
F−1i

)
= deg (FIi) = 2m− 1.

Then F and F−1 have a maximum possible algebraic degree equal to 2m− 1.

Consider the connection between the differential δ uniformity of the F

permutation and the parameters of the transformations used in constructing it.

Lemma 1 ([85]). Let the permutation F be calculated by the equation (13),
a1, a2, b1, b2 ∈ Fm

2 , then δ
a1∥a2,b1∥b2
F is greater than or equal to the number of solutions

to the following system of equationss′1 (x1, x2)⊕ s′1(x1 ⊕ a1, x2 ⊕ a2) = b1

s′′2 (x1, x2)⊕ s′′2(x1 ⊕ a1, x2 ⊕ a2) = b2
(14)

with the following constraints on the values of the variables x1 and x2:
1. x2 ̸= ẏ1, x2 ̸= ẏ1 ⊕ a2;
2. x1 ̸= π̂−11 (ẏ2), x1 ̸= π̂−11 (ẏ2)⊕ a1.

Remark 1. The lemma 1 allows to perform a directed search for pairs of functions
s′1 (x1, x2) and s′′2 (x1, x2) such that the differential δ-uniformity of the constructed
permutation F is not higher than a predetermined bound ∆. A necessary condition
for differential∆-uniformity of the substitution F is that the number of solutions of the
system (14) will be less than or equal to ∆.

Let us show by the example of parametric families of permutations discussed
in [83] that the lemma 1 allows us to limit the possible parameter values at which the
permutation F will have a differential δ-uniformity not less than a given one.

Let the functions

y1 = F1 (x1, x2) =

π1 (x1) · x2, x2 ̸= θ

π̂1 (x1) , x2 = θ
, (15)
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y2 = F2 (x2, y1) =

π2 (x2 · y1) , y1 ̸= θ

π̂2 (x2) , y1 = θ
, (16)

where the permutations πi, π̂i, i ∈ 1,2 are parameters of the family of permutations
given by the formula (1).

Note that the functions

s′1(x1, x2) = π1(x1) · x2 and s′2(x2,y1) = π2 (x2 · y1)

are C-functions having one punctured point x2 = θ and y1 = θ respectively. For these
functions, the proposition 4 and the corollary 3 are applicable. It is worth noting that
s′1 is a bent function belonging to the Maiorana–McFarland class, and the function s′2
belongs to the extended Maiorana–McFarland class of bent functions if π2 is a linear
substitution (see e.g. [19]).

Let’s express y2 as a function of x1 and x2 using the proposition 6 of this work.
To fulfill the conditions of the proposition above, it is necessary that

F1

(
π̂−11 (θ), x2

)
= θ, (17)

F2(θ, y1) = π̂2(θ). (18)

From equality (17) it follows that π1(x1) = θ ⇔ π̂ (x1) = θ, and from equality (18)
it follows that π2(θ) = π̂2(θ). Then

y2 =

π2

(
(x2)

2 · π1 (x1)
)
, x1 ̸= π̂−1(θ)

π̂2 (x2) , x1 = π̂−1(θ)
. (19)

Let π̂−11 (θ) = c1, π̂2(θ) = c2, the permutation F (x1, x2) = (y1, y2) is defined
by equations (15), (19). Then the affine-equivalent permutation G = F (x1 + c1, x2) +

(θ, c2) is obviously also defined by the equations (15), (19) (with other parameters).
Then, without losing generality, we will further consider only the case where θ is fixed
point for πi, π̂i, i ∈ 1,2.

Definition 3 ([85]). Let x1, x2 ∈ Fm
2 , πi, π̂i ∈ S (Fm

2 ), πi(θ) = θ, π̂i(θ) = θ, i ∈ 1,2,
then the permutation FA, defined as follows

y1 =

π1 (x1) · x2, x2 ̸= θ

π̂1 (x1) , x2 = θ
,
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y2 =

π2

(
(x2)

2 · π1 (x1)
)
, x1 ̸= θ

π̂2 (x2) , x1 = θ
.

will be called a permutation from the parametric family of type “A” or just a
permutation of type “A”.

The following proposition allows us to significantly reduce the parametric family
of type “A”. It is possible not to consider permutations with linear parameter π2 since
in this case such permutations will be differentially δFA

⩾ 2m − 2-uniform, which will
not allow their use in the synthesis of secure symmetric encryption algorithms.

Proposition 8 ([85]). Let FA be a permutation from the parametric family of type “A”.
If π2 is a linear permutation, then δFA

⩾ 2m − 2.

In the case when π2 is a linear function, the function s′1 defined in this section is a
bent function and has the highest possible nonlinearity, but, according to the proposition
8, the constructed permutation will have a high differential δ-uniformity.

There remains the question of choosing specific permutations πi, π̂i, i ∈ 1,2. In
[83] we considered type “A” permutations for the case m = 4.

For simplicity, the parametersπi, i ∈ 1,2will be fixed bymonomial permutations.
Such permutations have the form xd, where GCD (d, 2m − 2) = 1. Given Fermat’s little
theorem, we are only interested in d < 2m − 2.

In this case, the equations specifying the permutation can be rewritten in the
following form:

y1 =

xα1 · x2, x2 ̸= θ

π̂1 (x1) , x2 = θ
,

y2 =


(
x22 · xα1

)β
, x1 ̸= θ

π̂2 (x2) , x1 = θ
=

x2β2 · x
αβ
1 , x1 ̸= θ

π̂2 (x2) , x1 = θ
.

In this case, according to the proposition 8 the transformation xβ must be a
nonlinear transformation. Such permutations have been considered in [83] for the
case m = 4, in which permutations of type “A” with monomial parameter were
investigated experimentally. For the case m = 4 there exist 8 values of d such that
GCD

(
d, 24 − 2

)
= 1 are 1, 2, 4, 7, 8, 11, 13, 14. Moreover, if d ∈ {1,2,4,8}, then

xd defines a linear permutation. According to the proposition 8 π2 cannot be linear.
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In [83], by fixing α with an arbitrary value from the set α ∈ {1,2,4,7,8,11,13,14} and
β ∈ {1,2,4,8}, by a suitable choice π̂i we obtain permutations with the following
non-linearity indices:

– nonlinearity — 108,
– differential δ-uniformity — 6,
– algebraic degree — 7.

That is, in themost interesting case from a practical point of viewm = 4, the proposition
8 sets a sufficient condition for constructing permutations with “good” cryptographic
properties.

Let the functions

F1 (x1, x2) =

x1 · π1 (x2) , π1 (x2) ̸= θ

π̂1 (x1) , π1 (x2) = θ
,

F2 (x2, y1) =

x2 · π2 (y1) , π2 (y2) ̸= θ

π̂2 (x2) , π2 (y2) = θ
,

where the permutations πi, π̂i, i ∈ 1,2 are parameters of the family of permutations
given by the expression (1).

Note that the functions s′(x1, x2) = x1 · π1(x2) and s′(x2, y1) = x2 · π2(y1) are
C-functions as well as the Maiorana-McFarland bent functions, [19].

As before, let us express y2 as a function of x1 and x2 using the proposition 6.
And similarly, we will consider only the case where θ is fixed point for πi, π̂i, i ∈ 1,2.

Definition 4 ([85]). Let x1, x2 ∈ Fm
2 , πi, π̂i ∈ S (Fm

2 ), πi(θ) = θ, π̂i(θ) = θ, i ∈ 1,2,
then the permutation FB defined by equations

y1 =

x1 · π1 (x2) , x2 ̸= θ

π̂1 (x1) , x2 = θ
,

y2 =

x2 · π2 (x1 · π1 (x2)) , x1 ̸= θ

π̂2 (x2) , x1 = θ
,

will be called a permutation from the parametric family of type “B” or just a
permutation of type “B”.

Let’s determine the inverse of the permutation type “B”.

x1 =

y1 · π2 (y2)
−1 , π2 (y2) ̸= θ

π̂−12 (y1) , π2 (y2) = θ
,
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x2 =

y2 · π1 (x2)
−1 , π1 (x2) ̸= θ

π̂−11 (y2) , π1 (x2) = θ
.

Thus an inverse of a permutation of type “B” is itself a permutation of type “B”.
Let us use the lemma 1 and describe the value of parameters at which the

permutation is known to have high differential δ-uniformity.

Proposition 9 ([85]). Let H < S (Fm
2 ) be the set of linear permutations. If π2 ∈ H or

π1 ∈ x−1H , then δSB
⩾ 2m − 2.

Consider the case of monomial permutations: π1 = xα, π2 = xβ where α,β

satisfies the equality GCD
(
α, 24 − 2

)
= 1, GCD

(
β, 24 − 2

)
= 1. Then

y2 =

x1 · xα2 , x2 ̸= θ

π̂1 (x1) , x2 = θ
,

y1 =

x2 · (x1 · xα2 )
β , x1 ̸= θ

π̂2 (x2) , x1 = θ
=

xβ1 · x
αβ+1
2 , x1 ̸= θ

π̂2 (x2) , x1 = θ
.

In [83] experimental study of “B” type permutations in the case m = 4 was
carried out. According to 9 the parameter values α and β belong to the following sets:
α ∈ {1,2,4,8}, β ∈ {7,11,13,14}. Let us show that when α is fixed, there exists unique
β at which the permutation will not have a high differential δ-uniformity.

Proposition 10 ([85]). Let m = 4 and π1 = xα, π2 = xβ where α,β satisfies the
equality GCD

(
α, 24 − 2

)
= 1, GCD

(
β, 24 − 2

)
= 1. Then if αβ+1 ̸= 14 (mod 15),

then δFB
⩾ 2m − 2.

Thus, the following cases are possible, which were experimentally found in the
work [83].

1. π1(x) = x, π2(x) = x13,
2. π1(x) = x2, π2(x) = x14,
3. π1(x) = x4, π2(x) = x7,
4. π1(x) = x8, π2(x) = x11.

In this case, cases 2 and 4 are the inverse of cases 1 and 3, respectively. For these cases, if
π̂i is chosen correctly, the [83] obtained permutations with the following cryptographic
properties:

– nonlinearity — 108,



28

– differential δ-uniformity — 6,
– algebraic degree — 7.
Consider the family of permutations that generalize the permutations of type “A”

and “B” when fixing the monomial parameters of the permutations considered earlier.
Let us examine a family of permutations whose parameters are a quadruple of powers
(α,β,γ, δ) and permutations π̂i, i ∈ 1,2:

G1 (x1, x2) = y1 =

xα1 · x
β
2 , x2 ̸= θ

π̂1 (x1) , x2 = θ
,

G2 (x1, x2) = y2 =

xγ1 · xδ2, x1 ̸= θ

π̂2 (x2) , x1 = θ
.

(20)

For the equation (20) to specify a bijective transformation, it is sufficient that the
equation G1 (x1, x2) = a1

G2 (x1, x2) = a2

had a solution for arbitrary a1, a2 ∈ Fm
2 .

Consider the case m = 4. By Fermat’s little theorem there are a total of 8
monomial permutations of the field F24 that are not equal to each other. Using the
lemma 1 we can constrain the parameter values (α,β,γ, δ) in the equation (??) using
a computer, similar to [83]. As in [83], if parameters π̂i, i ∈ 1,2 are chosen correctly,
we obtain permutations that have the following cryptographic properties:

– nonlinearity — 108,
– differential δ-uniformity — 6,
– algebraic degree — 7.

It has been experimentally verified that the above nonlinearity indices are achieved, for
example, when π̂i(x) = xd, d ∈ {7,11,13,14}.

In [91] it is shown that the generalized construction is also an F -construction. For
the case m = 4, the classification of parameter values (α,β,γ, δ) using the lemma 1
is performed and it is shown that permutations with the above cryptographic properties
can only be constructed using the parameters given in [85].

It is easy to show that for a large number of parameter values of the considered
parametric families of permutations the value of graph algebraic immunity equals to
2, which can potentially lead to the use of algebraic methods of analysis of symmetric
encryption algorithms, [23]. Consider (2m,m)-functions s′1, s′2, s′′1, s′′2 of the form:
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1. y = x1 · x2 ⊕ Indθ(x2);
2. y = x1 · x−12 ⊕ Indθ(x2);
3. y = x−21 · x2 ⊕ Indθ(x2).

For each of these functions we can give a function g(x1, x2, y) whose nonzero linear
combination of coordinate functions equals 0, which has an algebraic degree at most
two, indicating that the value of the graph algebraic immunity of permutations with
such coordinate functions will equal 2. Indeed, for the first function g(x1, x2,x3) =

x2 · y ⊕ x1 · x22 = 0, for the second — g(x1, x2,x3) = x2 · y ⊕ x1 = 0, for the third —
g(x1, x2,x3) = y ·x2⊕y ·x1 = Indθ(x2). In the case of monomial choice of substitutions
πi, i = 1,2 for a parametric family of type “B” all substitutions will have the value
AIgr(F ) = 2, as for the parametric family of type “A”withmonomial choiceπi, i = 1,2

with linear substitution π1, and in the case of nonlinear choice when π̂2 = x−1.
Thus, three parametric families of nonlinear bijective transformations are

proposed; for the most interesting from the practical point of view case m = 4

some parameters are fixed, allowing to produce permutations possessing “good”
cryptographic properties at a suitable choice of π̂i, i = 1,2. If parameters π̂i, i ∈ 1,2

are chosen correctly, we obtain permutations having the following cryptographic
properties:

– nonlinearity — 108,
– differential δ-uniformity — 6,
– algebraic degree — 7;
– graph algebraic immunity — 3.
Consider the method of construction π̂i, i = 1,2 using a heuristic algorithm

based on the well-known genetic algorithm [32]. This approach was previously used
successfully in the implementation of the spectral-linear and spectral-differential
methods of permutation construction [60]. A detailed description of the algorithm,
its correctness, and optimization methods are described in detail in [90]. Briefly,
the essence of the proposed algorithm consists in successive multiplication of
the permutations π̂i, i = 1,2 by transpositions and selection among the obtained
permutations of the F8

2 space of the best on nonlinearity, differential uniformity and
corresponding values in linear and difference spectra. Thus, the current generation of
permutations generates some number of new pairs, of which only a small number of the
“best” survive. No crossing is performed, only “random mutations” within π̂i, i = 1,2.
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Consider the construction of the nonlinear bijective transformation of the
Kuznyechik algorithm, whose representation was taken as the basis for the parametric
families of permutations studied in this dissertation.

Proposition 11 ([86]). For the π permutation of the Kuznyechik algorithm, there are
the following (Ai,Bi), i = 1,2, subgroups of F8

2

– A1 =
{
α−1 (0xd · x∥x)

∣∣ x ∈ F24
}
, B1 = {β (0x0∥y)| y ∈ F24},

– A2 =
{
α−1 (x∥0x0)

∣∣ x ∈ F24
}
, B2 = {β (y∥0x0)| y ∈ F24},

such that there exist a, b ∈ F8
2 : π(Ai ⊕ a) = Bi ⊕ b.

Definition 5 ([86]). A pair of subgroups of the space Fq (A,B) will be called I-pair for
the permutation π : Fq → Fq if there exist a,b ∈ Fq such that

π(A⊕ a) = B⊕ b.

We will call A and B the LI and RI sets for π, respectively.

The path span(S) is a linear span of the set S. Then, using the ideas proposed
in [52], we can propose the following algorithm for finding I-pairs for permutation
π : Fq → Fq:

1. i := 0

2. for every a, b ∈ Fq:
a. Ai ← {0};
b. Bi ← span (π (Ai ⊕ a)⊕ b);
c. Ai ← span

(
π−1 (Ai ⊕ b)⊕ a

)
;

d. if Ai = span(Ai) then:
– if |Ai| ̸= 28, print(Ai = Ai ⊕ a,Bi = Bi ⊕ b), i← i+ 1;
– for every x ∈ F8

2\Ai: Ai ← span (Ai ∪ x), go to step (2.b);
In proposition 11 we found two I pairs of sets (Ai,Bi) for permutation π; every

set consists of 16 elements. Using algorithm 1 one can find such pairs of sets of any
size. We implemented it and founded:

– 2 I pairs (Ai,Bi), |Ai| = |Bi| = 16;
– 1 943 I pairs (Ai,Bi), |Ai| = |Bi| = 4;
– 2 730 I pairs (Ai,Bi), |Ai| = |Bi| = 2.
For permutations of the proposed parametric families, there are also I-pairs of

power 2m each kind:
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1. A′1 = {(θ∥x)| x ∈ F2m}, B′1 = {(θ∥y)| y ∈ F2m},
2. A′2 = {(x∥θ)| x ∈ F2m}, B′2 = {(y∥θ)| y ∈ F2m},

Thus, it is necessary to be able to provide a reasonable estimate of the security of
symmetric encryption algorithms with respect to invariant attacks.

The fourth chapter of the thesis is devoted to the influence of the design features
of the proposed parametric families of perrmutations on the security of symmetric
encryption algorithms. We will use the notations from the first section.

Definition 6 ([92]). We will call matrices of type II as matrices C ∈ (F2)n′m,n′m of the
form

C =

 C1,1 . . . C1,m
... . . . ...

Cm,1 . . . Cm,m

 ,

where Ci,j ∈ (F2)n′,n′ are nonsingular, i,j = 1, . . . ,m.

Consider a symmetric encryption algorithm based on an XSL network structure
with a linear transformation given by a matrix of type II. Let us describe one approach
to find sets GK ⊂ Fn

2 , invariant with respect to the composition of transformations
X[K] ◦ L ◦ S. Let there be a pair of families of sets (A,B), where

A = {A1, A2, . . . , Aea} , Ai ⊆ Fn′

2 ,

B = {B1, B2, . . . , Beb} , Bi ⊆ Fn′

2 ,

and for every i ∈ {1, . . . ,ea} there exists j ∈ {1, . . . ,eb} such that Aπ
i ⊆ Bj . Consider

the familiesAm and Bm — the direct product of the setsA and B respectively. Then for
any elementAi1×. . .×Aim ∈ Am there exists an elementBj1×. . .×Bjm ∈ Bm such that

(Ai1 × . . .× Aim)
S =

(
Aπ

i1
× . . .× Aπ

im

)
⊆ Bj1 × . . .× Bjm.

The set GK will be searched among subsets of the set Am, that is, elements of the set
GK are sets of the form Ai1 × Ai2 × . . . × Aim ∈ Am.

Let C be a family of sets such that for any element Bj1 × . . . × Bjm ∈ Bm there
exists an element C of the family C for which the inclusion

(Bj1 × . . .× Bjm)
L ⊆ C.

Let there also be K ∈
(
Fn′

2

)m such that CX[K] = Am, that is, the following diagram
is true:

Am S−→ Bm L−→ C X[K]−−→ Am. (21)
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We will do all further reasoning under the assumption that the diagram is
feasible 21. In this case, the equality is obviously satisfied: |C| = |Am| . Indeed,
consider the element Ai1 × Ai2 × . . . × Aim ∈ Am, i1, . . . , im ∈ {1, . . . ,ea}. Let
K = (k1, k2, . . . , km). Then

(Ai1⊕k1)× (Ai2⊕k2)× . . .× (Aim⊕km) ∈ C.

Thus, set C consists of a direct product of sets of the form Aj⊕ki, j ∈ {1, . . . ,ea}, i ∈
{1, . . . ,m}.

Proposition 12 ([92]). Let there be a symmetric encryption algorithm based on an XSL-
network whose linear transformation L = (la,b)m×m , la,b ∈ GLn′(2), a,b = 1, . . . ,m,

is given by matrix of type II. Consider the sets

B = Bi1 × Bi2 × . . .× Bim ∈ Bm, i1, . . . , im ∈ {1, . . . ,eb}

and
C = Cj1 × Cj2 × . . .× Cjm ∈ C, j1, . . . , jm ∈ {1, . . . ,ea},

such that BL ⊆ C, and for some key K ∈
(
Fn′

2

)m the diagram 21 is fulfilled. Then for
any j ∈ {j1, . . . , jm} the inequality |Cj| ⩾ max

i∈{i1,...,im}
|Bi|.

It follows from the trueness of the diagram 21 that for any i1, . . . , im ∈ {1, . . . ,ea}
there exist such j1, . . . , jm ∈ {1, . . . ,ea} that the diagram will be true:

Ai1 × . . .× Aim

X[K]◦L ◦ S−−−−−−→ Aj1 × . . .× Ajm.

Let us define on the familyAm an oriented graph Γ with marked arcs as follows.
The vertices of this graph are elements of the family Am, and the vertices X,Y ∈ Am,

are connected by an arc marked K if and only if there exists a key K such that
XX[K]◦L ◦ S −→ Y . In this case, if Fn′

2 ∈ A, then it is obvious that for an arbitrary keyK((
Fn′

2

)m)X[K]◦L ◦ S
=

(
Fn′

2

)m

there is a cycle, which we will call trivial. To construct the set GK it is necessary to be
able to find non-trivial cycles in the graph Γ. In particular GK is the set of vertices of
graph Γ lying on cycles of length 1 (loops) labeledK. However, further we propose to
consider the more general case when a loop consists of more than one vertex. Suppose
that in a graph Γ there exists a nontrivial cycle of length r given by a subfamily of the
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familyAm. This is equivalent to the fact that some subsetAm is invariant with respect to
r rounds of the algorithm under consideration for some keysK1, . . . , Kr. Let us find the
necessary conditions for the existence of a nontrivial loop and propose a constructive
algorithm for finding it.

Let A′ ⊂ Am — the set of vertices of graph Γ defining some nontrivial cycle of
length r. Denote B′ = (A′)S, C ′ = (B′)L. Thus, for each A ∈ A′ there exists a key K

and a set C ∈ C ′ such that CX[K] = A.

Proposition 13 ([92]). Suppose there is a symmetric encrytpion algorithm based on
an XSL-network whose linear transformation L = (la,b)m×m , la,b ∈ GLn′(2), a,b =

1, . . . ,m, is given by a type II matrix, elements of the family A′ define some nontrivial
loop of the graph Γ, Aa1 × . . .× Aam ∈ A′, и

Bb1 × . . .× Bbm ∈ B′, Bb1 × . . .× Bbm = S (Aa1 × . . .× Aam) ,

Cc1 × . . .× Ccm ∈ C ′, Cc1 × . . .× Ccm = L (Bb1 × . . .× Bbm) .

Then
1. |Aa1| = |Bb1| = |Cc1|,
2. |Aa1| = |Aa2| = . . . = |Aam|,
3. |Bb1| = |Bb2| = . . . = |Bbm|,
4. |Cc1| = |Cc2| = . . . = |Ccm|.

The following proposition allows us to specify an algorithm for finding cycles in
a Γ graph or prove that there are no nontrivial cycles.

Proposition 14 ([92]). Let for a symmetric encryption algorithm based on XSL-network
whose linear transformation L = (la,b)m×m , la,b ∈ GLn′(2), a,b = 1, . . . ,m, is given
by matrix of type II, elements of A′ family define some non-trivial loop of graph Γ. Let
also

B = Bi1 × Bi2 × . . .× Bim ∈ B′,

C = Cj1 × Cj2 × . . .× Cjm ∈ C ′,

where C = BL. Then
1. for arbitrary v ∈ {1, . . . ,m} the set Biv is a coset on some subgroup of Fn′

2 ;
2. for arbitrary v ∈ {1, . . . ,m} the set Cjv is a coset on some subgroup of Fn′

2 ;

Corollary 5 ([92]). Let in the conditions of the previous proposition

A = A′i1 × A′i2 × . . .× A′im ∈ A
′.
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Then for any j ∈ {1, . . . ,m} the set A′ij a coset on some subgroup of F
n′

2 .

Thus, we are first of all interested in such pairs of sets (A,B) that Aπ = B,
A = HA⊕hA, B = HB⊕hB, and HA, HB — subspaces of Fn′

2 , hA,hB ∈ Fn′

2 .
Suppose there are M pairs of such sets (Ai, Bi), i ∈ {1, . . . ,M}, with Ai =

HA,i⊕hA,i, Bi = HB,i⊕hB,i, |Ai| = |Aj| ∀i,j ∈ {1, . . . ,M}. The necessity of the same
size of the sets Ai is due to a similar requirement for the sets that form a cycle in the
graph Γ. Consider the vector h ∈

(
Fn′

2

)m:
h = (hB,i1, hB,i2, . . . , hB,im) , i1, . . . , im ∈ {1, . . . ,M}.

The total of such vectors is |M |m.
For each v,w = 1, . . . ,m, calculate the set C(h,v,w) ⊂ Fn′

2 :

C(h,v,w) =

{
m∑
b=1

hB,ib · lb,w + y · lv,w

∣∣∣∣∣ y ∈ HB,v

}

and check if there exists such g(w) ∈ Fn′

2 and such j(w) ∈ {1, . . . ,M}, depending
on w, that

C(h,v,w)⊕g(w) = Aj(w).

That is, for different v but the same w the set Aj(w) and the element g(w) must be
the same.

Theorem 1 ([92]). Let for a symmetric encryption algorithm based on XSL-network
whose linear transformation L = (la,b)m×m , la,b ∈ GLn′(2), a,b = 1, . . . ,m, is given
by a matrix of type II, the elements of the family A′ specify some non-trivial loop in
the graph Γ. Let also Ai = HA,i⊕hA,i, HA,i — a subspace of Fn′

2 , hA,i ∈ Fn′

2 , i ∈
{1, . . . ,M}, with |Ai| = |Aj| ∀i,j ∈ {1, . . . ,M}. For the set A ∈ A′,

A = Ai1{timesAi2 × . . .× Aim, i1, . . . , im ∈ {1, . . . ,M}

there exists a keyK such that AL ◦ S ◦X[K] = A′ ∈ A′,

A′ = Aj1 × Aj2 × . . .× Ajm, j1, . . . , jm ∈ {1, . . . ,M}

then and only if for every w ∈ {1, . . . ,m} there exists a vector g(w) ∈ Fn′

2 and number
j(w) ∈ {1, . . . ,M} such that for any v ∈ {1, . . . ,m} the equality is satisfied

C(h,v,w)⊕g(w) = Aj(w),
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where

C(h,v,w) =

{
m∑
b=1

hB,ib · lb,w⊕y · lv,w

∣∣∣∣∣ y ∈ HB,v

}
.

Using the proved theorem, it is possible constructively to enumerate invariants for
the round transformation of an algorithm based on the XSL-network of the considered
kind.

Using the results of the theorem 1, it is possible to propose the following approach
to prove the impossibility of applying the proposed attack for the Kuznyechik algorithm.
Let (Ai,Bi) I-pair for substitution π. Consider

B
(j)
i = {θ} × . . .× {θ}︸ ︷︷ ︸

j−1

×Bi × {θ} × . . .× {θ},

L
(
B

(j)
i

)
= C

(j)
i =

{(
c
(j,1)
i,k , . . . , c

(j,m)
i,k

)
, k = 1, . . . , |Bi|

}
.

Then according to the theorem 1 each set

C
(j,l)
i =

{
c
(j,l)
i,k , k = 1, . . . , |Bi|

}
is some LI set Ad for π. Then

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕). The following is true

Proposition 15 ([86]). Let π be a permutation, L be a linear and S be a nonlinear
transformation of the Kuznyechik algorithm. Then for every I pair (Ai,Bi), |Bi| > 1,
for permutation π and for every j = {1, . . . ,m}, there is l = {1, . . . ,m} so that C(j,l)

i

is not a subset of any subgroup Ad so that

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕).
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Conclusion

The main results of this work are as follows.
1. A new timing attack on block cipher algorithms, implemented on GPU,

is developed. The fundamental possibility of applying timing attacks
on symmetric algorithms implemented on GPU is shown. The practical
applicability of the proposed method of analysis for the AES algorithm is also
shown.

2. Parametric families of permutations are proposed, estimated for them such
cryptographic properties as nonlinearity, algebraic degree, differential δ-
uniformity. Algorithms for constructing nonlinear bijective transformations
from the considered parametric families are developed.

3. Proposed a new invariant attack for block ciphers based on XSL-network.
4. The inefficiency of applying the proposed attack for the Kuznyechik algorithm

is shown.



39

References

1. GOST 34.11-2018. Information technology. Cryptographic data security. Hash-
function. –– М. : Standartinform, 2018. –– 25 p. –– (International Standard). –– (In
Russian).

2. GOST 34.12-2018. Information technology. Cryptographic data security. Block
ciphers. –– М. : Standartinform, 2018. –– 14 p. –– (International Standard). –– (In
Russian).

3. Information Security Doctrine of the Russian Federation. –– Rossiyskaya Gazeta,
2016. –– URL: https://rg.ru/documents/2016/12/06/doktrina-infobezobasnost-
site-dok.html ; (In Russian).

4. Methodological document. Methodology for assessing threats to information se-
curity. –– М. : FSTEC of Russia, 2021. –– 83 p. –– (In Russian).

5. R 1323565.1.012-2017. Information technology. Cryptographic data security.
Principles of creation and modernization for cryptographic modules. –– М. :
Standartinform, 2018. –– 23 p. –– (Recommendations for standardization). –– (In
Russian).

6. Aziz, A. A look-up-table implementation of AES / A. Aziz, N. Ikram //. ––
01/2007. –– P. 187––191.

7. Bao, Z.Bitsliced Implementations of the PRINCE, LED and RECTANGLEBlock
Ciphers on AVR 8-bit Microcontrollers. / Z. Bao, P. Luo, D. Lin // IACR Cryp-
tology ePrint Archive. –– 2015. –– Vol. 2015. –– P. 1118. –– URL: http://dblp.uni-
trier.de/db/journals/iacr/iacr2015.html#BaoLL15.

8. Bernstein,D. J.Cache-timing attacks on AES : tech. rep. / D. J. Bernstein. –– 2005.

9. Biham, E. A Fast New DES Implementation in Software. / E. Biham // FSE.
Vol. 1267 / ed. by E. Biham. –– Springer, 1997. –– P. 260––272. –– (Lecture Notes
in Computer Science). –– URL: http://dblp.uni-trier.de/db/conf/fse/fse97.html#
Biham97a.

10. Biham, E. Differential Cryptanalysis of DES-like Cryptosystems. / E. Biham,
A. Shamir // J. Cryptology. –– 1991. –– Vol. 4, no. 1. –– P. 3––72. –– URL: http:
//dblp.uni-trier.de/db/journals/joc/joc4.html#BihamS91.

https://rg.ru/documents/2016/12/06/doktrina-infobezobasnost-site-dok.html
https://rg.ru/documents/2016/12/06/doktrina-infobezobasnost-site-dok.html
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#BaoLL15
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#BaoLL15
http://dblp.uni-trier.de/db/conf/fse/fse97.html#Biham97a
http://dblp.uni-trier.de/db/conf/fse/fse97.html#Biham97a
http://dblp.uni-trier.de/db/journals/joc/joc4.html#BihamS91
http://dblp.uni-trier.de/db/journals/joc/joc4.html#BihamS91


40

11. Biryukov, A. Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRI-
BOBr1. / A. Biryukov, L. Perrin, A. Udovenko. –– 2016. –– http://eprint.iacr.org/
2016/071.

12. Biryukov, A. Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRI-
BOBr1. / A. Biryukov, L. Perrin, A. Udovenko. –– 2016. –– URL: http://dblp.uni-
trier.de/db/conf/eurocrypt/eurocrypt2016-1.html#BiryukovPU16.

13. Differential Cache-Collision Timing Attacks on AES with Applications to Em-
bedded CPUs. / A. Bogdanov, T. Eisenbarth, C. Paar, [et al.] // CT-RSA.
Vol. 5985 / ed. by J. Pieprzyk. –– Springer, 2010. –– P. 235––251. –– (Lecture
Notes in Computer Science). –– URL: http : / /dblp .uni- trier .de/db/conf /ctrsa /
ctrsa2010.html#BogdanovEPW10.

14. Strong 8-bit Sboxes with efficient masking in hardware extended version. /
E. Boss, V. Grosso, T. Güneysu, [et al.] // J. Cryptographic Engineering. ––
2017. –– Vol. 7, no. 2. –– P. 149––165. –– URL: http : / / dblp . uni - trier . de / db /
journals/jce/jce7.html#BossGGL0017.

15. An APN permutation in dimension six / K. Browning, J. Dillon, M. McQuistan,
[et al.]. –– 2010.

16. Buchfuhrer, D. The complexity of Boolean formula minimization. / D. Buch-
fuhrer, C. Umans // J. Comput. Syst. Sci. –– 2011. –– Vol. 77, no. 1. ––
P. 142––153. –– URL: http : / /dblp .uni - trier .de /db/ journals / jcss / jcss77 .html#
BuchfuhrerU11.

17. Burov,D. A.On the existence of special nonlinear invariants for round functions of
XSL-ciphers / D. A. Burov // Diskr. Mat. –– 2021. –– Vol. 33, no. 2. –– P. 31––45. ––
(In Russian).

18. Canteaut, A. Construction of Lightweight S-Boxes using Feistel and MISTY
structures (Full Version). / A. Canteaut, S. Duval, G. Leurent // IACR Cryptology
ePrint Archive. –– 2015. –– Vol. 2015. –– P. 711. –– URL: http://dblp.uni-trier.de/
db/journals/iacr/iacr2015.html#CanteautDL15 ; http://eprint.iacr.org/2015/711.

19. Carlet, C. Vectorial Boolean functions for cryptography / C. Carlet // Boolean
Models and Methods in Mathematics, Computer Science, and Engineering. ––
2006.

http://eprint.iacr.org/2016/071
http://eprint.iacr.org/2016/071
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2016-1.html#BiryukovPU16
http://dblp.uni-trier.de/db/conf/eurocrypt/eurocrypt2016-1.html#BiryukovPU16
http://dblp.uni-trier.de/db/conf/ctrsa/ctrsa2010.html#BogdanovEPW10
http://dblp.uni-trier.de/db/conf/ctrsa/ctrsa2010.html#BogdanovEPW10
http://dblp.uni-trier.de/db/journals/jce/jce7.html#BossGGL0017
http://dblp.uni-trier.de/db/journals/jce/jce7.html#BossGGL0017
http://dblp.uni-trier.de/db/journals/jcss/jcss77.html#BuchfuhrerU11
http://dblp.uni-trier.de/db/journals/jcss/jcss77.html#BuchfuhrerU11
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#CanteautDL15
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#CanteautDL15
http://eprint.iacr.org/2015/711


41

20. Building Your Private Cloud Storage on Public Cloud Service Using Embed-
ded GPUs / W. Cheng, F. Zheng, W. Pan, [et al.] // Security and Privacy in
Communication Networks. –– Cham : Springer International Publishing, 2018. ––
P. 512––528.

21. Chichaeva, A. A. Search for effectively implemented permutations with optimal
cryptographic characteristics / A. A. Chichaeva // Ruscrypto 2021. –– 2021. –– (In
Russian).

22. Christophe Clavier, L. R. Systematic and Random Searches for Compact 4-Bit
and 8-Bit Cryptographic S-Boxes / L. R. Christophe Clavier // IACR Cryptology
ePrint Archive. –– 2019.

23. Courtois, N. Cryptanalysis of Block Ciphers with Overdefined Systems of Equa-
tions / N. Courtois, J. Pieprzyk. –– 2002. –– https : / / eprint . iacr .org /2002/044.
Cryptology ePrint Archive, Report 2002/044.

24. Cruz Jiménez, R. A. de la. Generation of 8-bit S-Boxes having almost optimal
cryptographic properties using smaller 4-bit S-Boxes and finite field multiplica-
tion / R. A. de la Cruz Jiménez. –– www.cs.haifa.ac.il/~orrd/LC17/paper60.pdf.

25. Cruz Jiménez, R. A. de la. On some methods for constructing al-
most optimal S-Boxes and their resilience against side-channel attacks /
R. A. de la Cruz Jiménez. –– 2018. –– URL: https://eprint.iacr.org/2018/618 ;
https://eprint.iacr.org/2018/618. Cryptology ePrint Archive, Paper 2018/618.

26. Daemen, J. Rijndael for AES. / J. Daemen, V. Rijmen // AES Candidate Con-
ference. –– National Institute of Standards, Technology, 2000. –– P. 343––348. ––
URL: http://dblp.uni-trier.de/db/conf/aes/aes2000.html#DaemenR00.

27. Dobbertin, H. Construction of Bent Functions and Balanced Boolean Functions
with High Nonlinearity. / H. Dobbertin // FSE. Vol. 1008 / ed. by B. Preneel. ––
Springer, 1994. –– P. 61––74. –– (Lecture Notes in Computer Science). –– URL:
http://dblp.uni-trier.de/db/conf/fse/fse94.html#Dobbertin94.

28. First-Round and Last-Round Power Analysis Attack Against AES Devices /
S. D. Putra, A. D. W. Sumari, I. Asrowardi, [et al.] // 2020 International Con-
ference on Information Technology Systems and Innovation (ICITSI). –– 2020. ––
P. 410––415.

https://eprint.iacr.org/2002/044
www.cs.haifa.ac.il/~orrd/LC17/paper60.pdf
https://eprint.iacr.org/2018/618
https://eprint.iacr.org/2018/618
http://dblp.uni-trier.de/db/conf/aes/aes2000.html#DaemenR00
http://dblp.uni-trier.de/db/conf/fse/fse94.html#Dobbertin94


42

29. Fomin, D. B. Implementation of an XSL block cipher with MDS-matrix linear
transformation on NVIDIA CUDA / D. B. Fomin // Математические вопросы
криптографии. –– 2015. –– Vol. 6, no. 2. –– P. 99––108.

30. Freyre-Echevarria, A. On the Generation of Cryptographically Strong Substitu-
tion Boxes from Small Ones and Heuristic Search / A. Freyre-Echevarria // 10th
Workshop on Current Trends in Cryptology (CTCrypt 2021). Pre-proceedings. ––
2021. –– P. 112––128.

31. Gao, Y. Side-Channel Attacks With Multi-Thread Mixed Leakage / Y. Gao,
Y. Zhou // IEEE Transactions on Information Forensics and Security. –– 2021. ––
Vol. 16. –– P. 770––785.

32. Genetic Programming – An Introduction / W. Banzhaf, P. Nordin, R. E. Keller,
[et al.]. –– San Francisco, CA, USA : Morgan Kaufmann Publishers, 1998.

33. Block Ciphers That Are Easier to Mask: How Far Can We Go? / B. Gérard,
V. Grosso, M. Naya-Plasencia, [et al.] // CHES. Vol. 8086 / ed. by G. Bertoni,
J.-S. Coron. –– Springer, 2013. –– P. 383––399. –– (Lecture Notes in Computer
Science). –– URL: http : / / dblp . uni - trier . de / db / conf / ches / ches2013 . html #
GerardGNS13.

34. LS-Designs: Bitslice Encryption for Efficient Masked Software Implementa-
tions. / V. Grosso, G. Leurent, F.-X. Standaert, [et al.] // FSE. Vol. 8540 / ed. by
C. Cid, C. Rechberger. –– Springer, 2014. –– P. 18––37. –– (Lecture Notes in Com-
puter Science). –– URL: http : / /dblp .uni - trier .de /db /conf / fse / fse2014 .html#
GrossoLSV14.

35. Gullasch, D. Cache Games - Bringing Access-Based Cache Attacks on AES to
Practice. / D. Gullasch, E. Bangerter, S. Krenn // IEEE Symposium on Security and
Privacy. –– IEEEComputer Society, 2011. –– P. 490––505. –– URL: http://dblp.uni-
trier.de/db/conf/sp/sp2011.html#GullaschBK11.

36. Heys, H. M. A Tutorial on Linear and Differential Cryptanalysis. / H. M. Heys //
Cryptologia. –– 2002. –– Vol. 26, no. 3. –– P. 189––221. –– URL: http://dblp.uni-
trier.de/db/journals/cryptologia/cryptologia26.html#Heys02.

37. Hlavicka, J.AHeuristic BooleanMinimizer / J. Hlavicka, P. Fiser // ICCAD’01. ––
2001.

http://dblp.uni-trier.de/db/conf/ches/ches2013.html#GerardGNS13
http://dblp.uni-trier.de/db/conf/ches/ches2013.html#GerardGNS13
http://dblp.uni-trier.de/db/conf/fse/fse2014.html#GrossoLSV14
http://dblp.uni-trier.de/db/conf/fse/fse2014.html#GrossoLSV14
http://dblp.uni-trier.de/db/conf/sp/sp2011.html#GullaschBK11
http://dblp.uni-trier.de/db/conf/sp/sp2011.html#GullaschBK11
http://dblp.uni-trier.de/db/journals/cryptologia/cryptologia26.html#Heys02
http://dblp.uni-trier.de/db/journals/cryptologia/cryptologia26.html#Heys02


43

38. Iwai,K.Acceleration of AES encryption on CUDAGPU. / K. Iwai, N. Nishikawa,
T. Kurokawa // Int. J. Netw. Comput. –– 2012. –– Vol. 2, no. 1. –– P. 131––145. ––
URL: http://dblp.uni-trier.de/db/journals/ijnc/ijnc2.html#IwaiNK12.

39. Jakobsen, T. Attacks on Block Ciphers of Low Algebraic Degree / T. Jakobsen,
L. R. Knudsen // Journal of Cryptology. –– 2001. ––Vol. 14, no. 3. –– P. 197––210. ––
URL: https://doi.org/10.1007/s00145-001-0003-x.

40. Optimizing Implementations of Lightweight Building Blocks. / J. Jean, T. Peyrin,
S. M. Sim, [et al.] // IACR Trans. Symmetric Cryptol. –– 2017. –– Vol. 2017,
no. 4. –– P. 130––168. –– URL: http://dblp.uni-trier.de/db/journals/tosc/tosc2017.
html#JeanPST17.

41. Jiang, Z. H.A complete key recovery timing attack on a GPU. / Z. H. Jiang, Y. Fei,
D. R. Kaeli // HPCA. –– IEEE Computer Society, 2016. –– P. 394––405. –– URL:
http://dblp.uni-trier.de/db/conf/hpca/hpca2016.html#JiangFK16.

42. Jiang, Z. H. Exploiting Bank Conflict-based Side-channel Timing Leakage of
GPUs. / Z. H. Jiang, Y. Fei, D. R. Kaeli // TACO. –– 2020. –– Vol. 16, no. 4. ––
42:1––42:24. –– URL: http: / /dblp.uni- trier .de/db/journals/ taco/taco16.html#
JiangFK20.

43. A Timing Side-Channel Attack on a Mobile GPU. / E. Karimi, Z. H. Jiang, Y. Fei,
[et al.] // ICCD. –– IEEE Computer Society, 2018. –– P. 67––74. –– URL: http :
//dblp.uni-trier.de/db/conf/iccd/iccd2018.html#KarimiJFK18.

44. Kipper,M. S. Implementing AES on GPU: Final Report / M. S. Kipper, J. Slavkin,
D. Denisenko //. –– 2011.

45. Knudsen, L. R.Non-Linear Approximations in Linear Cryptanalysis / L. R. Knud-
sen, M. J. B. Robshaw // Advances in Cryptology — EUROCRYPT ’96 /
ed. by U. Maurer. –– Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. ––
P. 224––236.

46. Kocher, P. C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
andOther Systems / P. C. Kocher // LectureNotes in Computer Science. –– 1996. ––
Vol. 1109. –– P. 104––113. –– URL: citeseer.ist.psu.edu/kocher96timing.html.

47. Komissarov, S. M. On algorithmic implementation of 16-bit S-boxes with ARX
and Butterfly structures / S. M. Komissarov // Prikl. Diskr. Mat. Suppl. –– 2019. ––
Vol. 12. –– P. 101––107. –– (In Russian).

http://dblp.uni-trier.de/db/journals/ijnc/ijnc2.html#IwaiNK12
https://doi.org/10.1007/s00145-001-0003-x
http://dblp.uni-trier.de/db/journals/tosc/tosc2017.html#JeanPST17
http://dblp.uni-trier.de/db/journals/tosc/tosc2017.html#JeanPST17
http://dblp.uni-trier.de/db/conf/hpca/hpca2016.html#JiangFK16
http://dblp.uni-trier.de/db/journals/taco/taco16.html#JiangFK20
http://dblp.uni-trier.de/db/journals/taco/taco16.html#JiangFK20
http://dblp.uni-trier.de/db/conf/iccd/iccd2018.html#KarimiJFK18
http://dblp.uni-trier.de/db/conf/iccd/iccd2018.html#KarimiJFK18
citeseer.ist.psu.edu/kocher96timing.html


44

48. A performance prediction model for the CUDAGPGPU platform / K. Kothapalli,
R. Mukherjee, M. S. Rehman, [et al.] // 2009 International Conference on High
Performance Computing (HiPC). –– 2009. –– P. 463––472.

49. Krasovsky, A. V. Actual and Historical State of Side Channel Attacks Theory /
A. V. Krasovsky, E. A. Maro // Proceedings of the 12th International Conference
on Security of Information and Networks. –– Sochi, Russia : Association for Com-
puting Machinery, 2019. –– (SIN ’19). –– URL: https://doi.org/10.1145/3357613.
3357627.

50. Kundi, D.-e.-S. Implementation of T-box/T-1-Box Based AES Design on Latest
Xilinx FPGA / D.-e.-S. Kundi, A. Aziz // Mehran University Research Journal
of Engineering & Technology ISSN 0254-7821. –– 2015. –– Oct. –– Vol. 34. ––
P. 441––446.

51. Kutzner, S. Enabling 3-Share Threshold Implementations for all 4-Bit S-Boxes. /
S. Kutzner, P. H. Nguyen, A. Poschmann // ICISC. Vol. 8565 / ed. by H.-S. Lee,
D.-G. Han. –– Springer, 2013. –– P. 91––108. –– (Lecture Notes in Computer
Science). –– URL: http : / / dblp . uni - trier . de / db / conf / icisc / icisc2013 . html #
KutznerNP13.

52. Leander, G. On Invariant Attacks / G. Leander //. –– 2019. –– Invited talk.

53. Lim, C. H. A Revised Version of Crypton - Crypton V1.0. / C. H. Lim // FSE.
Vol. 1636 / ed. by L. R. Knudsen. –– Springer, 1999. –– P. 31––45. –– (Lecture
Notes in Computer Science). –– URL: http://dblp.uni-trier.de/db/conf/fse/fse99.
html#Lim99.

54. Lim,C. H.CRYPTON:ANew 128-bit Block Cipher - Specification andAnalysis /
C. H. Lim. –– 1998.

55. Lo, O. Correlation Power Analysis on the PRESENT Block Cipher on an Em-
bedded Device. / O. Lo, W. J. Buchanan, D. Carson // ARES / ed. by S. Doerr,
M. Fischer, S. Schrittwieser, [et al.]. –– ACM, 2018. –– 21:1––21:6. –– URL: http:
//dblp.uni-trier.de/db/conf/IEEEares/ares2018.html#LoBC18.

56. Malyshev, F. M. Methods of linear and differential relations in cryptography /
F. M. Malyshev // Diskr. Mat. –– 2022. –– Vol. 34, no. 1. –– P. 36––63. –– (In
Russian).

https://doi.org/10.1145/3357613.3357627
https://doi.org/10.1145/3357613.3357627
http://dblp.uni-trier.de/db/conf/icisc/icisc2013.html#KutznerNP13
http://dblp.uni-trier.de/db/conf/icisc/icisc2013.html#KutznerNP13
http://dblp.uni-trier.de/db/conf/fse/fse99.html#Lim99
http://dblp.uni-trier.de/db/conf/fse/fse99.html#Lim99
http://dblp.uni-trier.de/db/conf/IEEEares/ares2018.html#LoBC18
http://dblp.uni-trier.de/db/conf/IEEEares/ares2018.html#LoBC18


45

57. Matsuda, S. Lightweight Cryptography for the Cloud: Exploit the Power of Bit-
slice Implementation. / S.Matsuda, S.Moriai // CHES.Vol. 7428 / ed. by E. Prouff,
P. Schaumont. –– Springer, 2012. –– P. 408––425. –– (Lecture Notes in Computer
Science). –– URL: http : / / dblp . uni - trier . de / db / conf / ches / ches2012 . html #
MatsudaM12.

58. Matsui, M. New Block Encryption Algorithm MISTY. / M. Matsui // FSE.
Vol. 1267 / ed. by E. Biham. –– Springer, 1997. –– P. 54––68. –– (Lecture Notes
in Computer Science). –– URL: http://dblp.uni-trier.de/db/conf/fse/fse97.html#
Matsui97.

59. Matsui, M. The First Experimental Cryptanalysis of the Data Encryption Stan-
dard. / M. Matsui // CRYPTO. Vol. 839 / ed. by Y. Desmedt. –– Springer, 1994. ––
P. 1––11. –– (Lecture Notes in Computer Science). –– URL: http : / / dblp . uni -
trier.de/db/conf/crypto/crypto94.html#Matsui94.

60. Menyachikhin, A. V. Spectral-linear and spectral-differential methods for gener-
ating S-boxes having almost optimal cryptographic parameters / A. V. Meny-
achikhin // Математические вопросы криптографии. –– 2017. –– Vol. 8, no. 2. ––
P. 97––116.

61. Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices of
SubBytes of AES. / Y. Nogami, K. Nekado, T. Toyota, [et al.] // IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. –– 2011. –– Vol. 94––A, no. 6. ––
P. 1318––1327. –– URL: http: / /dblp.uni- trier .de/db/ journals / ieicet / ieicet94a.
html#NogamiNTHM11.

62. Nishikawa, N. Implementation of Bitsliced AES Encryption on CUDA-Enabled
GPU / N. Nishikawa, H. Amano, K. Iwai // Network and System Security / ed. by
Z. Yan, R. Molva, W. Mazurczyk, [et al.]. –– Cham : Springer International Pub-
lishing, 2017. –– P. 273––287.

63. Mixed Bases for Efficient Inversion in F((22)2)2 and Conversion Matrices of
SubBytes of AES / Y. Nogami, K. Nekado, T. Toyota, [et al.] //. –– 08/2010. ––
P. 234––247.

64. NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Design Guide /
NVIDIA Corporation. –– 2022. –– URL: https : / / docs . nvidia . com / cuda / pdf /
CUDA_C_Programming_Guide.pdf ; Version 11.8.

http://dblp.uni-trier.de/db/conf/ches/ches2012.html#MatsudaM12
http://dblp.uni-trier.de/db/conf/ches/ches2012.html#MatsudaM12
http://dblp.uni-trier.de/db/conf/fse/fse97.html#Matsui97
http://dblp.uni-trier.de/db/conf/fse/fse97.html#Matsui97
http://dblp.uni-trier.de/db/conf/crypto/crypto94.html#Matsui94
http://dblp.uni-trier.de/db/conf/crypto/crypto94.html#Matsui94
http://dblp.uni-trier.de/db/journals/ieicet/ieicet94a.html#NogamiNTHM11
http://dblp.uni-trier.de/db/journals/ieicet/ieicet94a.html#NogamiNTHM11
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf


46

65. Olofsson, M. VLSI Aspects on Inversion in Finite Fields : PhD thesis / Olofs-
son Mikael. –– 02/2002.

66. Perrin, L. Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryp-
tographic Algorithms. : PhD thesis / Perrin Léo. –– University of Luxembourg,
2017.

67. Perrin, L. Cryptanalysis of a Theorem: Decomposing the Only Known Solution
to the Big APN Problem (Full Version). / L. Perrin, A. Udovenko, A. Biryukov //
IACR Cryptology ePrint Archive. –– 2016. –– Vol. 2016. –– P. 539. –– URL: http:
//dblp.uni-trier.de/db/journals/iacr/iacr2016.html#PerrinUB16 ; http://eprint.iacr.
org/2016/539.

68. Raddum,H.Algebraic Analysis of the SimonBlock Cipher Family / H. Raddum //.
Vol. 9230. –– 08/2015. –– P. 157––169.

69. Rebeiro, C. Bitslice Implementation of AES / C. Rebeiro, D. Selvakumar,
A. S. L. Devi // Cryptology and Network Security / ed. by D. Pointcheval, Y. Mu,
K. Chen. –– Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. –– P. 203––212.

70. Rijmen, V. The KHAZAD Block Cipher / V. Rijmen, P. Barreto. –– 2000.

71. Rudell, R. Multiple-Valued Logic Minimization for PLA Synthesis / R. Rudell //
Technical report, EECS Department, University of California, Berkeley. –– 1986.

72. Rolled architecture based implementation of AES using T-Box / P. V. S. Shastry,
N. Somani, A. Gadre, [et al.] //. –– 08/2012. –– P. 626––630.

73. Side-channel power analysis of a GPU AES implementation / C. Luo, Y. Fei,
P. Luo, [et al.] // 2015 33rd IEEE International Conference on Computer Design
(ICCD). –– 2015. –– P. 281––288.

74. Stallings,W.TheWhirlpool Secure Hash Function. /W. Stallings // Cryptologia. ––
2006. –– Vol. 30, no. 1. –– P. 55––67. –– URL: http://dblp.uni-trier.de/db/journals/
cryptologia/cryptologia30.html#Stallings06.

75. ICEBERG : An Involutional Cipher Efficient for Block Encryption in Reconfig-
urable Hardware. / F.-X. Standaert, G. Piret, G. Rouvroy, [et al.] // FSE. Vol. 3017 /
ed. by B. K. Roy, W. Meier. –– Springer, 2004. –– P. 279––299. –– (Lecture Notes
in Computer Science). –– URL: http://dblp.uni-trier.de/db/conf/fse/fse2004.html#
StandaertPRQL04.

http://dblp.uni-trier.de/db/journals/iacr/iacr2016.html#PerrinUB16
http://dblp.uni-trier.de/db/journals/iacr/iacr2016.html#PerrinUB16
http://eprint.iacr.org/2016/539
http://eprint.iacr.org/2016/539
http://dblp.uni-trier.de/db/journals/cryptologia/cryptologia30.html#Stallings06
http://dblp.uni-trier.de/db/journals/cryptologia/cryptologia30.html#Stallings06
http://dblp.uni-trier.de/db/conf/fse/fse2004.html#StandaertPRQL04
http://dblp.uni-trier.de/db/conf/fse/fse2004.html#StandaertPRQL04


47

76. Sun, B.NewCryptanalysis of Block Ciphers with LowAlgebraic Degree / B. Sun,
L. Qu, C. Li // Fast Software Encryption / ed. by O. Dunkelman. –– Berlin, Hei-
delberg : Springer Berlin Heidelberg, 2009. –– P. 180––192.

77. Highly efficient GF(28) inversion circuit based on hybrid GF representations. /
R. Ueno, N. Homma, Y. Nogami, [et al.] // J. Cryptographic Engineering. ––
2019. –– Vol. 9, no. 2. –– P. 101––113. –– URL: http : / / dblp . uni - trier . de / db /
journals/jce/jce9.html#UenoHNA19.

78. Finding Optimal Bitsliced Implementations of 4 x 4-bit S-boxes / M. Ullrich,
C. D. Cannière, S. Indesteege, [et al.]. –– 2011. –– Ecrypt II.

79. Zhou, Y. Side-Channel Attacks: Ten Years After Its Publication and the Impacts
on Cryptographic Module Security Testing / Y. Zhou, D. Feng. –– 2005. –– URL:
http://eprint.iacr.org/2005/388.

Author’s publications on the topic of this dissertation

80. A compact bit-sliced representation of Kuznyechik S-box / O. D. Avraamova,
D. B. Fomin, V. A. Serov, [et al.] // Mat. Vopr. Kriptogr. –– 2021. –– Vol. 12,
no. 2. –– P. 21––38.

81. Fomin, D. B. A timing attack on CUDA implementations of an AES-type block
cipher / D. B. Fomin //Mat. Vopr. Kriptogr. –– 2016. ––Vol. 7, no. 2. –– P. 121––130.

82. Fomin,D. B.Construction of permutations on the space V2m bymeans of (2m,m)-
functions / D. B. Fomin // Mat. Vopr. Kriptogr. –– 2020. –– Vol. 11, no. 3. ––
P. 121––138. –– (In Russian).

83. Fomin, D. B. New Classes of 8-bit Permutations Based on a Butterfly Structure /
D. B. Fomin // Mat. Vopr. Kriptogr. –– 2019. –– Vol. 10, no. 2. –– P. 169––180.

84. Fomin, D. B. O podhodah k postroeniyu nizkoresursnyh nelinejnyh preobrazo-
vanij / D. B. Fomin // Obozrenie prikladnoj i promyshlennoj matematiki. ––
2018. –– Vol. 25, no. 4. –– P. 379––381. –– (In Russian).

85. Fomin, D. B. On the algebraic degree and differential uniformity of permutations
on the space V2m constructed via (2m,m)-functions / D. B. Fomin // Mat. Vopr.
Kriptogr. –– 2020. –– Vol. 11, no. 4. –– P. 133––149. –– (In Russian).

http://dblp.uni-trier.de/db/journals/jce/jce9.html#UenoHNA19
http://dblp.uni-trier.de/db/journals/jce/jce9.html#UenoHNA19
http://eprint.iacr.org/2005/388


48

86. Fomin, D. B. On the impossibility of an invariant attack on Kuznyechik /
D. B. Fomin // Journal of Computer Virology and Hacking Techniques. –– 2022. ––
Vol. 18, no. 1. –– P. 61––67.

87. Fomin, D. B. On the way of constructing differentially 2δ-uniform permutations
over F22m / D. B. Fomin // Prikl. Diskr. Mat. Suppl. –– 2021. –– Vol. 14. ––
P. 51––55. –– (In Russian).

88. Fomin, D. B. Hardware implementation of one class of 8-bit permutations /
D. B. Fomin, D. I. Trifonov // Prikl. Diskr. Mat. Suppl. –– 2019. –– Vol. 12. ––
P. 134––137. –– (In Russian).

89. Kovrizhnykh, M. A. Heuristic algorithm for obtaining permutations with given
cryptographic properties using a generalized construction / M. A. Kovrizhnykh,
D. B. Fomin // Prikl. Diskr. Mat. –– 2022. –– Vol. 57. –– P. 5––21. –– (In Russian).

90. Kovrizhnykh, M. A. On a heuristic approach to constructing bijective vector
Boolean functions with given cryptographic properties / M. A. Kovrizhnykh,
D. B. Fomin // Prikl. Diskr. Mat. Suppl. –– 2021. –– Vol. 14. –– P. 181––184. –– (In
Russian).

91. Kovrizhnykh, M. A. On differential uniformity of permutations derived using a
generalized construction / M. A. Kovrizhnykh, D. B. Fomin // Mat. Vopr. Krip-
togr. –– 2022. –– Vol. 13, no. 2. –– P. 37––52.

92. Trifonov, D. I. Invariant subspaces in SPN block cipher / D. I. Trifonov,
D. B. Fomin // Prikl. Diskr. Mat. –– 2021. –– Vol. 54. –– P. 58––76. –– (In Rus-
sian).


	Introduction
	Summary of the work. Main Results
	Chapter I
	Chapter II
	Chapter III

	Conclusion
	Список литературы

